Fixed Points and Stability of a Generalized Quadratic Functional Equation
نویسندگان
چکیده
منابع مشابه
Intuitionistic fuzzy stability of a quadratic and quartic functional equation
In this paper, we prove the generalized Hyers--Ulamstability of a quadratic and quartic functional equation inintuitionistic fuzzy Banach spaces.
متن کاملstability of the quadratic functional equation
In the present paper a solution of the generalizedquadratic functional equation$$f(kx+ y)+f(kx+sigma(y))=2k^{2}f(x)+2f(y),phantom{+} x,yin{E}$$ isgiven where $sigma$ is an involution of the normed space $E$ and$k$ is a fixed positive integer. Furthermore we investigate theHyers-Ulam-Rassias stability of the functional equation. TheHyers-Ulam stability on unbounded domains is also studied.Applic...
متن کاملFixed points and fuzzy stability of an additive-quadratic functional equation
The fuzzy stability problems for the Cauchy additive functional equation and the Jensen additive functional equation in fuzzy Banach spaces have been investigated by Moslehian et al. Using fixed point method, we prove the Hyers-Ulam stability of the functional equation
متن کاملFixed Points and Generalized Hyers–ulam Stability of Quadratic Functional Equations
Let X, Y be complex vector spaces. It is shown that if a mapping f : X → Y satisfies f (x + iy) + f (x− iy) = 2f (x) − 2f (y) (0.1) or f (x + iy) − f (ix + y) = 2f (x) − 2f (y) (0.2) for all x, y ∈ X , then the mapping f : X → Y satisfies f (x + y) + f (x− y) = 2f (x) + 2f (y) for all x, y ∈ X . Furthermore, we prove the generalized Hyers-Ulam stability of the functional equations (0.1) and (0....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2009
ISSN: 1029-242X
DOI: 10.1155/2009/193035